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A kinetic equation is obtained for  the distribution function of anharmonie osc i l la tors  with r e -  
spect  to the vibrat ional  energy; it enables one in the diffusion approximation to descr ibe  the 
vibrat ional  relaxation of diatomic molecules  in a medium of inert  gas when there  is a weak 
interact ion between the osc i l la tors  and a the rmal  bath. The main difference f rom the equa- 
tion for  harmonic osc i l la tors  is in the appearance in the diffusion coefficient of an adiabaticity 
function that cha rac t e r i ze s  the var ia t ion of  the adiabaticity fac tor  because of the anharmoni-  
c i ty  of the vibrat ions.  It follows f rom the form of this function that the grea tes t  difference 
between the relaxation of anharmonic and harmonic oscEla to r s  is to be expected in the case  
of adiabatic interact ion of osc i l la tors  with par t ic les  of the inert gas. 

For  the descript ion of vibrat ional  kinetics in sys tems with the excitation of fair ly high vibrat ional  
levels,  the diffusion approximation is v e r y  convenient, for it enables one to use instead of a large number 
of balance equations for  the individual vibrat ional  levels a kinetic equation of the type of the F o k k e r - P l a n e k  
diffusion equation for the distr ibution function of the molecules with respec t  to the vibrational  energy. 

Such an equation is well known in the case  of approximation of a molecule by a harmonic osci l la tor ,  
but with increasing degree of excitation this approximation becomes  too crude.  

For  anharmonic osci l la tors ,  the diffusion equation is in pract ice  known only in the case of a non- 
adiabatic interaction (see [1]). In [2] this equation is given for a nar row range of energies  near the d i s so -  
ciat ion energy,  which is of no interest  for  the relaxation problem. In [3] a general  method of obtaining an 
equation for  a formal ly  introduced distribution function with respect  to the vibrational  levels of molecules 
was developed; the resul ts  of [3] are  basical ly  of interest  when one is consider ing p roces se s  in a one- 
component system. 

The absence of a suitable equation is due to the complexity of the calculat ion of the diffusion coeff i -  
cient of anharmonic osc i l la tors  in the space of the vibrat ional  energy.  In the present  paper  this problem 
is solved for Morse osc i l la tors  under  the well-known assumptions used to calculate the probabil i ty of exci ta-  
tion of the n-th vibrat ional  level of an osci l la tor  in the f i rs t  o rder  of per turbat ion theory  [4, 5]. 

1. S t a t e m e n t  o f  t h e  P r o b l e m  

We consider  a sys tem of diatomic osci l la tor  molecules in an inert  gas medium (thermal bath) with 
t empera tu re  T. For  the descript ion of the kinetics of the p rocess  we use the distribution function f (e, t) 
with respec t  to the vibrat ional  energy c.  This is justified ei ther  if the relaxation affects an appreciable 
number of levels  n >> 1 o r  the t empera tu re  T is sufficiently high (hv0/kT) < 1, so that exp ( - h  v / k T )  ~ 1 -  
hv0/kT {v 0 is the ground frequency of the vibrat ions of the oscil lator) .  A diffusion equation of t%e F o k k e r -  
Planck type is used for f (~, t) under the assumption that there  is equilibrium with respec t  to the ro ta -  
tional (and translational)  degrees  of f reedom of the molecules;  this equation has the form [6] 

0 (1.1) 
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B = ( ( A s )  2 ) /2Vo (1.2) 

Here .f~ (~) is the equilibrium distribution function at tempera ture  T; ((A~) 2) is the square of the 
change in the energy of the osc i l la tor  as  a resul t  of a coll ision averaged over  all coll isions;  ~0 is the mean 
free t ime of the osc i l la tors  in the gas. 

The use of the diffusion approximation presupposes  a weak interaction of the osc i l la tors  with the 
par t ic les  of the thermal  bath: Ae ~ 2v~0B << ~*, where s is the region of appreciable var ia t ion of f (~, t) 
in the considered kinetic process .  

The problem is to calculate the diffusion coefficient B. In general  form for a three-d imensional  
collision and an a rb i t r a ry  intermolecular  potential such problems are  v e r y  difficult to solve; in the best  
case (see [3]) the result  can be reduced to a multiple integral, and to est imate  this one must make severe  
simplifications, which a re  in pract ice  equivalent to an initial simplified t reatment  of the coll ision dynamics;  
in part icular ,  in [3] such an est imate was made under conditions analogous to those used in L a n d a u - T e l l e r  
theory. 

In this paper  we adopt a slightly different approach to the calculation of B - we attempt to determine 
not the absolute value of the diffusion coefficient of anharmonic osci l la tors  but only its dependence on the 
energy ~, i.e., it is sufficient to calculate "B to within some semiempir ica l  fac tor  that does not depend on the 
internal state of the molecule and is s imilar  to a coefficient of fr ict ion in phenomenological diffusiontheory.  

The existing calculations of the dynamics of vibrat ion excitation enable one to assume that fac tors  
such as the steric factor,  which takes into account the three-dimensional i ty  of a collision, the influence of 
the long-range part  of the intermolecular  interaction potential, and var ious  others  change essent ial ly  the 
absolute value of the excitation probabili ty and have little influence on the dependence of this quantity on the 
degree of excitation. Thus, it is here assumed that the dependence of B on e is bas ical ly  determined by the 
shor t - range  in termolecular  forces .  Accordingly,  B will be calculated below for the simplest  case  of a one-  
dimensional interaction of the osci l la tor  with an atom of the thermal  bath on the basis  of a potential of ex-  
ponential form. Then, in the diffusion equation, we prese rve  the dependence B (e) that is obtained and the 
absolute value of B is found through the vibrational  relaxation t ime of the harmonic osci l la tors ,  which is 
calculated, as is well known, under more general  assumptions about the cha rac te r  of the interaction. 

2.  D e t e r m i n a t i o n  o f  B a s  a F u n c t i o n  o f  

The var ia t ion of the osci l la tor  energy ~e  (Ae <<e) under the influence of a per turbing force F (t) due 
to a coll is ion of the osci l la tor  with an atom of the inert gas can be expressed  in the f i rs t  per turbat ion o rder  
in the form 

c o  

As = - -  I r (t) F (t) dr, r = - ~ "  dr (2.1) 

where r (t) is the coordinate of the vibrational  motion of the osci l la tor  in the absence of the per turbing 
force. 

The force  F (t) in the case of interaction with a potential of the form W (z) =W 0 exp ( -~z)  for  a col l i -  
sion that is one-dimensional  along r (see [4, 5] for more details) is 

F (t) = 1/2 ~ M y  ~ sch 2 (ar t  / 2) (2.2) 

Here v is the relat ive veloci ty of the atom; M is the reduced mass  of the atom and osci l la tor ;  ~ is a 
pa rame te r  that depends on the rat io of the masses  of the atoms of the osci l la tor ,  and a r  e > 1, ] ~ ( r - r e ) I < l .  

As anharmonic osci l la tor  we take a Morse osci l la tor  with potential function 

V (r) ----- D (1 --  exp (-- ~ (r --  re))) 2 (2.3) 

where D is the dissociat ion energy and re is the equilibrium distance. 

The potential (2.3) enables one to obtain the exact dependence r (t). However, for r (t) we f i rs t  take 
an approximate express ion (weak anharmonicity),  which especial ly simplifies the calculat ion of Ae ,  and 
we then make the calculat ion more prec ise  and consider  how this approximation affects the final resul ts  for 
((~ ~)2>. 
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We a s s u m e  

r (t) - -  re = r 0 (e) cos (~ (e)t ~- ~0) (2.4) 

H e r e  q is the init ial  phase  of  the v ib r a t i ons  and w (~) c o r r e s p o n d s  
to  the  c y c l i c  f r e q u e n c y  of v ib ra t i ons  of the  Morse  o s c i l l a t o r  with e n e r g y  e:  

r162 r  x = e / D  (2.5) 

g is the r e d u c e d  m a s s  of  the o sc i l l a t o r ,  and the osc i l l a t ion  ampl i tude  
r 0 (e) is d e t e r m i n e d  f r o m  the condi t ion  

(t~r~/2>~ -}- V(r) = e (2.6) 

whe re  the angu la r  b r a c k e t s  denote the m e a n  value  f o r  given ~. 

F r o m  (2.6) with a l lowance  fo r  (2.3) 

<l~r~]2>~ = D ~ r i - -  x(  i -- V l -- x) 

Hence,  with a l lowance  f o r  (2.4) 

[2(t - V V ~ )  }'/. 
ro (8) -- T ~ (2.7) 

In the z e r o t h  a p p r o x i m a t i o n  fo r  x <<1, Eq. (2.4) with (2.5) and (2.7) d e s c r i b e s  a h a r m o n i c  v ib r a t i on  
with cons tan t  f r e q u e n c y  w0" 

With a l lowance  fo r  (2.3) and (2.4), we obta in  f r o m  (2.1) 

he ---- 2M~(~ro~. (a sh ( (~  / (zv)) -~ sin ~ (2.8) 

A v e r a g i n g  now (Ae) 2 with a l lowance  fo r  (2.8) o v e r  all  va lues  of  ~ and the  Maxwell ian d i s t r ibu t ion  fo r  
the  ve loc i t i e s  of  the a toms ,  which fo r  a o n e - d i m e n s i o n a l  f lux of p a r t i c l e s  has  he re  the f o r m  

Fo (v) = (M / kT) v exp ( - -  My 2 / 2kT) 

we obtain 

<(As*)> ----- 4 kr~*(o~ro 2 M(1) (~) (2.9) 

dp(z) = ~2 i exp(--  y)csch~ ( . - ~ )  dy (2.10) 
@ 

~ = - ~ -  2--~V = H V I - x ,  H =--~- 2ki' (2.11) 

Taking  into accoun t  (2.5), (2.7), (2.9)-(2.11),  fo r  the di f fus ion coef f i c i en t  B =B  1 we obta in  in th i s  
app rox ima t ion  

B 1 = 8  kTD M x 2 V t _ x ( l _ V  ~--~-x) c~)(~) (2.12) 

We can  expect  tha t  in the f r a m e w o r k  of  the a s s u m p t i o n  of a weak  in t e rac t ion  in a m o r e  gene ra l  t r e a t -  
men t  of the co l l i s ion  d y n a m i c s  (al lowance fo r  t h r e e - d i m e n s i o n a l i t y ,  f o r c e s  of a t t r a c t i o n  in the potent ia l  of  
the i n t e r m o l e c u l a r  in te rac t ion ,  etc.)  the dependence  of  B on e (or  x) will  not be s t rong ly  changed  f r o m  
(2.12). Acco rd ing l y ,  

B = b2 V t - x (l - ] / t  - x) (I) (~o ~T~'- x) _~ bX1 (x) (I) (~) (2.13) 

where  b does  not depend on x. 

We now c o n s i d e r  how the dependence  of  B on x changes  if the exac t  va lue  r (t) ins tead  of (2.4) is used 
to  ca l cu la t e  A e.  

F o r  the Morse  o sc i l l a to r ,  r (t) has  the f o r m  

r - -  r e = ~-1 in [(l -~ ]/-x sin (o)t ~}- (p)) / (l - -  x)] (2.14) 
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and accordingly  

; = ~-  Vxr (~t + r Y, ( - ~ f - '  (V7 si. (~t + ~)f-1, x < i  (2.15) 

Retaining a few t e r m s  in the expansion (2.15) and making t r ans fo rma t ions ,  we obtain 

r ( t )  = 60 ] / -x  {(t ~- :I/4x -~ I/sx2 + 5/64z3 -31- . . .) cos ((o]~ -~ q)) - -  I/2 V x ( l  -~ 1/2x -~- 3116x~ -~-.. .)  sin 2 (~ot ~- ~o) 

- -  ~hx (1 § ~/~x/- . . . )  cos 3 @t + (p) + ~/sx l / x  sin 4 (cot + r § ~/~x ~ cos 5 (o)t + q~) + . . . }  
(2.16) 

Af te r  integrat ion of (2.1) with allowance for  (2.2) and (2.16) and subsequent averag ing  of the value ob-  
tained for  (Ar 2 with r e s pec t  to ~ and then with r e spec t  to v, we obtain for  the dependence of B on x 

B _~ b {x (1 - -  Z/~x - -  a/sx2 - -  8A~x8 ) ~P (~) + lhx2 (t - -  1/sx~ ) (I) (2~) ~- 

. l',~e* ~ (l + lax ) (I) (3~) -~ 1/eax'O (4~) ~- 0 (x 5, r (5~))} ~- b~, a~ (x) qb (n~) (2.17) 

where r (z) and 5 a r e  de te rmined  by (2.10) and (2.11). 

It can be seen f r o m  (2.17) that  al lowance for  the exact  express ion  for  r (t) has  led to the appearance  
in the diffusion coefficient  of t e r m s  with r (n~), n > 1, which in the language of quantum mechanics  c o r r e s -  
ponds to the manifes ta t ion  of multiquantum t rans i t ions  of the anharmonic  osc i l la tor .  

Fo r  a quanti tat ive compar i son  of (2.17) and (2.13) we note that  r (z) << 1 when z >~1 and r (z) ~ 1 
when z <<1, so  that  

B_~b ~( tn(x)~-bX3(z) ,  n~ ~ i (2.18) 

B _~ b a, (x) r (~) -=- bX2 (x) (1) (~), ~>> I (2.19) 

The c o m p a r i s o n  shows that  when n$ << 1 Eq. (2.13) is identical  with (2.17), i .e.,  X 3 ~ X1 [to within the 
t e r m s  taken into account in (2.17)] and that  X l (x) ~ X 2 (x) when $ >>1; for  in te rmedia te  va lues  of $ ,  the de-  
pendence of B on x is between (2.19) and (2.13). To elucidate this,  Fig. 1 shows the dependences X~ (x) and 
X 2 (x) (curves  1 and 2); the s t ra ight  line c o r r e s p o n d s  to a harmonic  osc i l l a to r  for  which 

B : bxO (~o) (2.20) 

What we have said i l lus t ra tes  the degree  of approximat ion  of weak anharmonic  ity [(2.4) with (2.5) and 
(2.7)] in the calcula t ion of ( (A g)2).  This approximat ion  is fully just if ied in the descr ip t ion  of v ibra t iona l  
re laxat ion  in the region of the exci ta t ion ene rg ie s  usual ly r ea l i zed  (x ~ 1/3). 

3. D i f f u s i o n  E q u a t i o n  

The kinetic equation (1.1) for  f (g, t) with allowance for  (2.13) can be wr i t ten  as  

a -~-0] ~ bl(:i) (~0) ~ x  {2 ~ - - ' x - -  x (1 - -  ~f t  ~---~-'x) q)(5) ( ~ -  - -  , ~  01n] ~ " Ox )}' b l=b(kTD)- i  (3.1) 

We now r e m e m b e r  that  for  harmonic osc i l l a to r s  with al lowance for  (2.20) the equation has the f o r m  

01 __b1(l )(~0) x ~ + a ]  , a :  
a -~- -- kT 

Eq. (3.1) goes over  into (3.2) in the l imit  x << 1. 

The solution of (3.2) is well known; mult iplying (3.2) by x and integrat ing the resu l t  with r e spec t  to 
dx, we obtain the usual re laxat ion  equation for  the ave rage  energy,  f rom which it follows that  b l~  (~0) is 
uniquely re la ted  to the re laxa t ion  t ime T 1 [bl~(}0) =(~1)-1]. 

There fo re ,  the requi red  diffusion equation is 

O] 0 In ~0 a-g~- 

(~, ~o) r (~ (x)) / �9 (~0), �9 = t ) ~-~ 

where ~1 is the v ibra t iona l  re laxa t ion  t ime  of the harmonic  osc i l l a to r s .  

(3.3) 
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Let us consider  in more  detail the quantities in (3.3). 

The pa rame te r  ~(x) has a simple physical  meaning; it is the adiabaticity pa r ame te r  that cha rac t e r i ze s  
the rat io of the interaction t ime to the period of the osc i l la tor  vibrat ion with energy e. 

The adiabaticity factor ,  r (~), here determines  the dependence of ((Ae) 2} on the adiabaticity p a r a m -  
eter .  

Finally, the function F (x, ~0), which may be called the adiabaticity function, cha rac t e r i ze s  the relative 
var ia t ion of the adiabaticity fac tor  due to the anharmonici ty  of the vibrat ions.  

To par t icu lar ize  F, one must calculate the integral  (2.10). The calculation simplifies in two limiting 
cases :  z << i and z >>1. For  a nonadiabatic interaction, ~ << 1, we have ~(~) =1; in the opposite case  ~ >> 1 
of an adiabatic interact ion the resul t  of the calculat ion gives the well-known L a n d a u - T e l l e r  dependence: 

@(~) -~ 8 V ~  ~/, exp (-- 3~',,) (3.4) 

For  intermediate  values of ~ one must  calculate �9 (~) numerica l ly  and the resul t  for 0 -< ~ -< 20 
(with relative e r r o r  • 20%) is given in [2] and can be represen ted  in the form 

cI) (~) ~_~ 1/2 [3 --  exp (-- 2/3 ~)1 exp (-- 2/a ~) (3.5) 

Accordingly,  F = 1 for ~ << 1 and (3.3) goes over  into an equation that descr ibes  vibrational  relaxation 
in the case  of a nonadiabatic interaction; the solution of this equation was investigated in [1]. In this case ,  
(3.3) is also identical with the diffusion equation obtained for  Morse osc i l la tors  [7] in the f ramework  of the 
phenomenological  diffusion theory  of Kramer s ,  which assumes  that the coefficient of f r ic t ion is independent 
of the vibrat ional  energy.  Here, the role of the coefficient of f r ic t ion is played by 1 /v  1. 

In the more  common case  ~0 >>1, the vibrational  relaxation in the region of low energies  can be de- 
s c r ibedbywr i t ing  Eq. (3.3) approximately with allowance for (3.4) in the form 

. . . . .  r +ol)} (3.6) a -~- ~- -~x i x exp (~0 ~,x) l -~x 

It follows f rom Eqs. (3.3), (3.6), and (3.2) that the difference between the relaxation of the distribution 
function of anharmonic and harmonic osc i l l a to rs  depends on ~0" When ~0 <<1, it is due to the difference in 
the diffusion coefficient between 2 ( 1 -  l~'~:'x-x) and x and is manifested basical ly  when x ~ 1. When ~0 >> 1, 
the difference is cha rac t e r i zed  by the s t rongest  dependence on x with the fo rm exp (~0 ~/3 x). Therefore ,  
in the case  of an adiabatic interaction, the relaxation of the distribution function of anharmonic osc i l la tors  
may be ve ry  different f rom the relaxation of harmonic osc i l la tors  in the region of low energies  (even for  
x <<1); in the same case of interact ion one will observe  the greates t  difference between the relaxation t ime 
of the mean energy and r I and between the form of the relaxation equation for the energy and the ord inary  
exponential form. 

It is of in teres t  to make a detailed investigation of the kinetics of the p rocess  of deactivation (and 
excitation) of vibrat ions as a function of the pa rame te r  ~0 by ei ther  the numerical  or  approximate analytic 
solution of Eq. (3.3) and also the equation that is obtained when instead of (2.13) one uses the more general  
dependence (2.17) [ in the  la t ter  the function F n (x, ~0) = ~ (n~)/~ (n~0) appears  as well as F (x, C0)]. It is 
important  that to determine the influence of anharmonici ty  on the kinetics of the p roces s  it is not neces sa ry  
to par t icu lar ize  q .  It is helpful to r e m e m b e r  that ~1 can be expressed  in t e rms  of the probabil i ty of exci ta-  
tion of the f i rs t  vibrational level of a harmonic osci l la tor ,  whose value can be determined experimental ly  
(or computationally). 

Finally we note that the condition of weak interaction, on which the diffusion approximation is based, 
is sat isfied bet ter ,  the more  adiabatic is the collision, i.e., the l a rge r  is ~0, and for any interaction it 
p resupposes  T 1 >> ~0- 
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